If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x^2)+x=1
We move all terms to the left:
(2x^2)+x-(1)=0
a = 2; b = 1; c = -1;
Δ = b2-4ac
Δ = 12-4·2·(-1)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3}{2*2}=\frac{-4}{4} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3}{2*2}=\frac{2}{4} =1/2 $
| 3x+2=x+4(x-2) | | f+7=-13 | | a=18/3(5-2) | | -7p+1=-2p+3-7p | | 38/x=63/91 | | x+3/5=−5 | | -5-6x=-7x-2 | | -7+5-4b+6=6-8-7b | | 1.5(x+6)=4.5-3x | | (X-6)+7x=180 | | 16-4n=-4n-4n | | -2+3/2x+8-x=14 | | 5x-6=9x-30 | | 3(55+-2y)+y=90 | | 5a+4-8a=a-4 | | 5x+76=96 | | 33+8c=11c | | 67+x+150=180 | | 6x+76+5x+82=180 | | x÷2.8=4.2 | | -3/t-3=-4/3 | | 5x-6+2x+4+3x+2=180 | | 12x-31+13x-39=180 | | 3x+8(x-9)=47 | | x^2-45+450=0 | | 7.8x-4.9-5.4=2.3 | | m/8=m+7/10 | | 4g-12(g)=32 | | 5w=w-8 | | 4g-12(g))=32 | | 6(2+6x)=6+3(2+7x) | | 4g-12(2)=32 |